Q1.

In this shape, one of the angles is obtuse.
Tick (\checkmark) the obtuse angle.

Q2.
Here are two shapes on a square grid.
For each shape, write how many right angles it has.

Q3.
Look at this shape.

Tick ($\sqrt{ }$) each angle that is less than a right angle.

Q4.
Here is a diagram for sorting shapes.
One of the shapes is in the wrong place.
Put a cross (X) on it.

Q5.

Not to scale

Calculate the size of angle \boldsymbol{y} in this diagram.
Do not use a protractor (angle measurer).

1 mark

Q6.
Join dots on the grid to make a quadrilateral that has $\mathbf{3}$ acute angles.

Q7.

Circle the pentagon with exactly four acute angles.

Q8.
Kirsty says,

[^0]Explain why Kirsty is not correct.

1 mark

Q9.
Layla completes one-and-a-half somersaults in a dive.

How many degrees does Layla turn through in her dive?

Q10.
Two of the angles in a triangle are 70° and 40°

Jack says,

Explain why Jack is not correct.

1 mark

Q11.
Here are five shaded triangles on a square grid.

Write the letter of each triangle that has a right angle.
\square

Write the letter of each triangle that has two equal sides.

1 mark

Q12.

Here are five angles marked on a grid of squares.

Write the letters of the angles that are obtuse.

Write the letters of the angles that are acute.

Q13.

A shaded isosceles triangle is drawn inside a rectangle.

Not
to scale

Calculate the size of angle \boldsymbol{a}.

Q14.
Anna has four different triangles.
Complete the table to show the size of the angles in each triangle.

Type of triangle	Angle 1	Angle 2	Angle 3
Isosceles	90°		
Right-angled	80°		
Isosceles	70°		
Isosceles	70°		

Q15.
Here is a rectangle.

Not to

 scaleCalculate the size of angles \boldsymbol{a} and \boldsymbol{b}.
Do not measure the angles.

$$
\begin{aligned}
& \boldsymbol{a}=\square^{\circ} \square_{1 \text { mark }} \\
& \boldsymbol{b}=\square^{\circ} \mathrm{mark} \\
&
\end{aligned}
$$

Mark schemes

Q1.

Correct angle indicated as shown:

Accept alternative unambiguous indications, eg correct angle crossed or circled.

Q2.
2 AND 4
Accept alternative unambiguous indications, eg right angles marked on diagrams.

Q3.
Two angles ticked as shown:

Do not award the mark if additional incorrect angles are ticked.
Accept alternative unambiguous indications of the correct angles, eg angles circled.

Q4.
One shape crossed as shown:

Do not award the mark if additional incorrect shapes are indicated.
Accept alternative unambiguous indications of the correct shape, eg shape ticked or circled.

Q5.
25

Q6.
A quadrilateral with three acute angles, e.g.

OR

OR

Accept inaccurate drawing provided the intention is clear.

Q7.

The correct shape circled as shown:

Accept alternative unambiguous positive indications, e.g. shape ticked.

Q8.
An explanation that includes a correct counter example, e.g.

- When you double 10° it is not obtuse
- $2 \times 27^{\circ}=54^{\circ}$
- Double 45° is a right angle not obtuse

OR

An explanation that demonstrates where the statement in the question is not correct, e.g.

- If the acute angle is less than 45° then doubling it will be less than 90°,
so it won't be obtuse (more than 90°).
Do not accept vague or incomplete explanations, e.g.
- Sometimes it will be acute
- Some acute angles are half an obtuse angle, but not all
- When you double an acute angle, you get a right angle

Do not accept explanations which include incorrect mathematics or incorrect information that is relevant to the explanation, e.g.

- $20^{\circ} \mathrm{C} \times 2=40^{\circ} \mathrm{C}$
- $20 \% \times 2=40 \%$

Q9.
540

Q10.

An explanation showing an understanding:

- that this specific triangle has angles 70, 70 and 40

OR

- of the properties of an equilateral triangle - all angles are equal $\left(60^{\circ}\right)$
and therefore that this triangle cannot be equilateral, e.g.
- The angles aren't 60°
- There is not a 60° angle
- It has two different angles $\left(70^{\circ}\right.$ and $\left.40^{\circ}\right)$ so it can't be equilateral
- The angles aren't the same
- An equilateral triangle has $60^{\circ}+60^{\circ}+60^{\circ}$
- All the angles are the same in an equilateral triangle
- It's an isosceles triangle.
(In the context of this question, the term isosceles triangle is treated as not including equilateral triangles as a special type, as the national curriculum does not specify this at key stage 2.)

Do not accept vague or incomplete explanations, e.g.

- The other angle is 70°
- They aren't (all) the same. (No reference to angles)
- An equilateral triangle has equal angles. (Does not say all.)
Do not accept explanations which include incorrect mathematics or incorrect information that is relevant to the explanation, e.g.
- $40+70=110+70=180$

Q11.

(a) C AND D Letters may be given in either order.
(b) A AND D

Letters may be given in either order.

Q12.
(a) c AND e

Letters may be given in either order.
(b) a AND d

Letters may be given in either order.

Q13.

Award TWO marks for the correct answer of 104°.
If the answer is incorrect, award ONE mark for evidence of an appropriate method, e.g:

- $180-38-38=\mathrm{a}$

Answer need not be obtained for the award of ONE mark.

Q14.
Completes all four rows of the table correctly, eg:

90°	$\mathbf{4 5}$	$\mathbf{4 5}$
80°	$\mathbf{9 0}$	$\mathbf{1 0}^{\circ}$
70°	$\mathbf{7 0}$	$\mathbf{4 0}$
70°	$\mathbf{5 5}^{\circ}$	$\mathbf{5 5}^{\circ}$

Accept angles within a row in either order
Accept the bottom two rows may be given in either order
! Condone omission of degree signs
$!$ For 2 marks, do not accept correct angles in $3^{\text {rd }}$ row repeated in $4^{\text {th }}$ row, in either order
or
Completes three rows correctly

Q15.
(a) 56
(b) 34

If the answers to (a) and (b) are incorrect, award ONE mark if their (a) plus their (b) $=90^{\circ}$, provided that (b) is not 45°, 30° or 60°.

[^0]: When you double the size of an acute angle, you always get an obtuse angle.

