Q1.

Put a ring round two numbers which divide by 5 with no remainder.
7
60
19
45
37
58

Q2.

Write in the missing number.

Q3.

A box holds 6 eggs.

How many boxes are needed to hold 52 eggs?

Q4.

Write the missing number.

Q5.

Here are six cards.

Use a card to complete each calculation.

Q6.
Put brackets into this expression to make it correct.

$$
10^{2} \div 10 \div 10 \div 10 \div 10=100
$$

Q7.
The mass of a 10 p coin is 6.5 g .
The mass of a $5 p$ coin is half the mass of a $10 p$ coin.
What is the mass of these six coins altogether?

Q8.
Calculate $936 \div 36$

Q9.
In this tower, two numbers are multiplied to give the number above.

Write the missing numbers in the tower below to make it correct.

Q10.
(a) 1 kilogram of grapes costs $£ 5.80$

Megan buys 700 grams of grapes.
How much does she pay?

```
£
```

1 mark
(b) 1 kilogram of cheese costs $£ 13.50$

Megan buys a piece of cheese costing £2.49

What is the mass of the cheese to the nearest $\mathbf{1 0 0}$ grams?

Q11.

Write the missing number in each calculation.

Q12.

Here is a number pyramid.
The number in a box is the product of the two numbers below it.
Write the missing numbers.

Mark schemes

Q1.
60 and 45

Q2.
50

Q3.
9 (boxes)

Q4.
2.5

Accept equivalent fractions or decimals

Q5.
Award TWO marks for all three calculations completed correctly, as shown:

If the answer is incorrect, award ONE mark for two calculations correct.

Q6.
Brackets inserted correctly, eg

$$
\begin{aligned}
& 10^{2} \div(10 \div 10) \div(10 \div 10)=100 \\
& \text { OR } \\
& \left.10^{2} \div[(10 \div 10) \div 10)\right] \div 10=100 \\
& \text { OR } \\
& \left(10^{2} \div 10\right) \div[(10 \div 10) \div 10]=100 \\
& \text { OR } \\
& 10^{2} \div\{10 \div[10 \div(10 \div 10)]\}=100
\end{aligned}
$$

$$
\begin{aligned}
& \text { OR } \\
& 10^{2} \div[10 \div(10 \div 10) \div 10]=100 \\
& \text { OR } \\
& 10^{2} \div[10 \div 10 \div(10 \div 10)]=100 \\
& \\
& \quad \begin{array}{l}
\text { Accept alternative placing of brackets provided the } \\
\text { original expression is unchanged and the answer is } \\
\\
\text { mathematically correct. }
\end{array}
\end{aligned}
$$

Q7.

Award TWO marks for the correct answer of 29.25 g .
If the answer is incorrect, award ONE mark for evidence of an appropriate method, e.g:

- $\quad 6.5 \div 2=3.25$
$3 \times 6.5=20.5$ (error)
$3 \times 3.25=9.75$
$20.5+9.75$

OR

- $\quad 10 p+5 p$ weigh $6.5 g+3.25 g=9.75$

3 of each coin $=9.75 \times 3$
Answer need not be obtained for the award of ONE mark.
Up to 2

Q8.
Award TWO marks for the correct answer of 26
If the answer is incorrect award ONE mark for evidence of appropriate working which contains not more than ONE arithmetical error, eg:

Working must be carried through to reach an answer for the award of ONE mark.
In all cases, accept follow-through of ONE error in working.

- Long divisional algorithm

Variations on algorithms are acceptable, provided they represent a viable and complete method.
Do not award any marks if the final answer is missing.

- Short division algorithm
wrong answer
$3 6 \longdiv { 9 3 ^ { 2 1 } 6 }$

Short division methods must be supported by evidence of appropriate carrying figures to indicate use of division algorithm and be a complete method.

- Repeated addition/subtraction methods, eg

936
$-360 \quad 10 \times 36$
576
$-360 \quad 10 \times 36$
216
$-216 \quad 6 \times 36$
wrong answer
No mark is awarded for addition/subtraction the wrong number of times.

- Factorisation methods, eg:
$936 \div 9=104$
$104 \div 4=$ wrong answer
Up to 2

Q9.
Gives the three correct numbers in their correct positions, ie:

Accept unambiguous indication
Accept equivalent fractions and decimals, eg:

- accept $12 \frac{3}{6}$ for 12.5
or
Gives two correct numbers in their correct positions

Q10.
(a) $£ 4.06$
! Money
See guidance
(b) 200

> ! Measures
> See guidance
or
Gives an answer of 180 or 184 or 184.4(...)

OR

Shows or implies a complete correct method, eg:

- $1000 \times 2.49 \div 13.50$
- $£ 13.50 \div £ 2.49=5.42$
$1000 \div 5.42$
- $1350 \div 1000=1.35$
$249 \div 1.35$
- $£ 1.35=100$
$£ 2.70=200$
! Inconsistent units
Within an otherwise correct method, condone
eg, for 1 mark accept:
- (£) $13.50 \div 1000=1.35$ (p)
(£) $2.49 \div 1.35$ (p)
- (£) $13.50 \div 1000=(£) 0.0135$

249(p) $\div(£) 0.0135$

Q11.
(a) 7
(b) 8

Q12.

Award TWO marks for three numbers correctly placed.

If the answer is incorrect award ONE mark for two numbers correctly placed.
Commentary: This question involves multiplying and dividing decimals where the answer has up to two decimal places (6F9).

