Q1.

\boldsymbol{j} and \boldsymbol{k} stand for two numbers.
Double \boldsymbol{j} equals half of \boldsymbol{k}.
Write numbers to complete the sentence below.

Q2.

Q3.
The rule for this sequence of numbers is 'add $\mathbf{3}$ each time'.

$\begin{array}{lllllll}1 & 4 & 7 & 10 & 13 & \ldots\end{array}$

The sequence continues in the same way.
Mary says,
'No matter how far you go there will never be a multiple of 3 in the sequence'.
Is she correct?
Circle Yes or No.
Yes / No

Q4.
Here is a pattern of number pairs.

a	b
1	9
2	19
3	29
4	39

Complete the rule for the number pattern.

$$
b=\square \times a-\square
$$

Q5.
Look at these equations.

$$
\begin{aligned}
& a=2 b \\
& b=3 c
\end{aligned}
$$

Which equation below is also true?

Put a ring round the correct one.

$$
\begin{gathered}
b=2 a \quad a=2 b+3 c \quad a=5 c \\
a=6 c \quad a+b=5
\end{gathered}
$$

Q6.
Adam chooses the colours for a new team shirt.
The shirt has two colours.

There are four colours to choose from: yellow, blue, white and red.
Write the two missing combinations.
The shirt could be:

- yellow and blue
- yellow and white
- yellow and red
- blue and white.
\qquad and \qquad
\qquad and \qquad

Q7.

$$
x+2 y=20
$$

x and y are whole numbers less than 10
What could \boldsymbol{x} and \boldsymbol{y} be?

$$
\begin{aligned}
& x=\square \\
& y=\square
\end{aligned}
$$

Q8.

Here is an equation.

$$
m-2 n=10
$$

When $n=20$ what is the value of m ?

$$
m=\ldots 1 \text { mark }
$$

When $m=20$ what is the value of n ?

$$
n=\longrightarrow 1 \text { mark }
$$

Q9.
Here are Alfie and Emma with their parents.

You can use the table below to predict how tall children will be when they are adults.
There is one formula for boys and a different one for girls:

```
Boy's predicted height Girl's predicted height
```

$0.4(x+y)+42$	$0.4(x+y)+29$
x is the father's height in $\mathrm{cm} . \boldsymbol{y}$ is the mother's height in cm.	

(a) Calculate the predicted height of Alfie when he is an adult.

1 mark
(b) When Emma is an adult, she is predicted to be taller than her mother.

How much taller?

Q10.
(a) There are \boldsymbol{n} counters in Alfie's bag.

Alfie puts $\mathbf{3}$ more counters in the bag.
Write an expression for the number of counters that are in the bag now.

1 mark
(b) Megan has two boxes.

There are \boldsymbol{m} counters in each box.

She puts all her counters together in a pile, then removes 5 of them.

Write an expression for the number of counters that are in the pile now.

1 mark

Q11.

x stands for an odd number.
y stands for an even number.

Look at the expressions below.
For each expression, tick to show if it is odd or even.

The first one is done for you.

Q12.

Look at this expression.

$$
10 y+2
$$

When $y=0.4$, the value of $10 y+2$ is an even number because $10 \times 0.4+2=6$

Write a value for y so that $10 y+2$ is a prime number.

Now write a value for y so that $10 y+2$ is a square number.

```
y=
```


Q13.

In this sequence, the rule to get the next number is

Multiply by 2, and then add 3

Write the missing numbers.

Q14.
Dev says,

Which expression shows how much money Dev has left? \boldsymbol{a} is the amount of money, in pounds, that Dev gave away.

Tick one.
$10+\boldsymbol{a}$ \square
$10 \div a$ \square
$a-10$ \square

$$
\begin{array}{ll}
10-\boldsymbol{a} & \square \\
\boldsymbol{a} \times 10 & \square
\end{array}
$$

Mark schemes

Q1.

Two numbers where the value of k is four times the value of j, eg

OR

Q2.
17

Q3.
Explanation which recognises that each number is one more than a multiple of 3 , eg

- 'It starts at 1 and keeps adding 3 so it misses all the multiples of 3 ',
- 'Multiples of 3 are all 1 less than the numbers'.

No mark is awarded for circling 'Yes' alone.
Do not accept vague or arbitrary explanations such as

- 'They're too big';
- 'It doesn't go far enough';
- 'It is adding 3 all the time'.

If 'No' is circled but a correct unambiguous explanation is given then award the mark.

Q4.
Both numbers correct as shown:

Q5.
Equation circled as shown:

$$
b=2 a \quad a=2 b+3 c \quad a=5 c
$$

$$
a+b=5
$$

Accept unambiguous indication

Q6.
Two combinations, as shown:
blue and red OR red and blue

AND

white and red OR red and white.

Q7.
Award ONE mark for any pair of whole numbers less than 10 that satisfy the equation, i.e.
$x=8$ AND $y=6$
OR
$x=6$ AND $y=7$
OR
$x=4$ AND $y=8$
OR
$x=2$ AND $y=9$

Q8.
(a) 50
(b) 5

Q9.
(a) 178
(b) 5

Q10.

(a) $n+3$ or $3+n$
! Algebra
! Alternative letter used, eg, for part (a), accept m used instead of n , if the expression is otherwise correct:

- $m+3$
(b) $2 m-5$
! Condone unsimplified or unconventional algebra, eg, for part (b):
- $m+m-5$
- m2-5

Q11.

Makes all four correct decisions, ie:
-

Accept unambiguous indications, eg:

- ' y ' or ' x ' for ticked in each row
or
Makes three correct decisions

Q12.
(a) Gives a value for y such that $10 y+2$ is a prime number, eg:

- 0
- $\frac{1}{2}$
- 1.7
(b) Gives a value for y such that $10 y+2$ is a square number, eg:
- -0.1
- 0.2
- 0.7
- $\quad 1.4$

Q13.
(a) 11 written in the first box, as shown:

$\mathbf{1 1} \square 25$	$\square 3$

(b) 109 written in the last box, as shown:

	25	53

Q14.

Award ONE mark for the correct box ticked, as shown:

Accept alternative unambiguous positive indication of the correct answer, e.g. Y.

